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Abstract

Many emerging large-scale data science applications require searching large graphs
distributed across multiple memories and processors. This paper presents a scalable
implementation of distributed breadth-first search (BFS) which has been applied to
graphs with over one billion vertices. The main contribution of this paper is to compare
a 2-D (edge) partitioning of the graph to the more common 1-D (vertex) partitioning.
For Poisson random graphs which have low diameter like many realistic information
network data, we determine when one type of partitioning is advantageous over the
other. Also for Poisson random graphs, we show that memory use is scalable. The
experimental tests use a level-synchronized BFS algorithm running on a large Linux
cluster and BlueGene/L. On the latter machine, the timing is related to the number of
synchronization steps in the algorithm.

1 Introduction

Many data science applications are beginning to use sparse relational data in the form of
graphs. For example, to determine the nature of the relationship between two vertices in
a relational data graph, the shortest graph distance paths between the two vertices can
be used [1, 5]. Breadth-first search (BFS) may be applied for this task. More efficient
algorithms based on bi-directional or heuristic search are also possible but fundamentally
have the same structure as BFS. Indeed, BFS is used in a myriad of applications and is
related to sparse matrices and sparse matrix-sparse vector multiplication. Distributed BFS
(and shortest path) algorithms are not new. There is in particular much literature on the
case where each processing element stores a single vertex in the graph. See, for example,
[15] for a review of results.

In this paper, we study the behavior of BF'S on very large-scale graphs partitioned across
a large distributed memory supercomputer. A critical question is how to partition the graph,
which will affect the communication and overall time for BFS. This paper is novel in that it
studies distributed BF'S with a 2-D partitioning of the graph, corresponding to a partitioning
of the edges. The more common 1-D partitioning corresponds to a partitioning of the
vertices. 1-D partitioning is simpler and leads to low communication volume and number of
messages for graphs arising in many scientific applications, such as the numerical solution
of partial differential equations (PDEs). Many graphs arising in data science applications,
however, have properties very different from PDE meshes. In particular, these graphs have
low average path length, that is, the typical length of the shortest distance path between
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any two vertices is small. For example, the average path length may vary as O(logn) where
there are n vertices in the graph. 1-D partitionings for graphs with this property leads to
high communication volume and total number of messages.

We thus consider 2-D partitioning. Besides potentially lower communication volume,
the advantage of 2-D partitioning over 1-D partitioning is that collective communications
involve only O(+/P) processors rather than P processors in the 1-D case. 2-D partitioning
is most well-known for dense matrix computations [6] and has been proposed for sparse
matrix computations where the structure of the matrix is difficult to exploit [9]. However,
2-D partitioning is rarely used, perhaps because most problems to date have sufficient
structure so that 1-D partitioning is adequate. Further, whereas there are many algorithms
and codes for generating 1-D partitionings by optimizing communication volume [8, 10, 3],
algorithms and codes for 2-D partitioning have only recently become available [2, 4].

There are several variants of 2-D partitioning. The most useful variant has been called
transpose free doubling/halving [12], redistribution-free method [11], and 2-D checkerboard
[4]. In this paper, we will simply call this 2-D partitioning, and will describe it in the next
section. For other variants, see [2, 6, 9, 11, 12, 13].

In this paper, we study Poisson random graphs, where the probability of an edge con-
necting any two vertices is constant. We use arbitrary partitionings with the constraint
that the partitions are balanced in terms of number of vertices and edges. For P processors
and n vertices, we define a scalable implementation to be one that uses O(n/P) storage
per processor. For Poisson random graphs, we will show in particular that the sum of the
sizes of the messages sent by one processor to other processors is O(n/P) for fixed average
degree k. This result applies to both 1-D and 2-D partitionings.

In other work we are also studying more structured graphs. In particular, a family of
graphs called spatial graphs has as a parameter the probability of connectedness between
neighbors of a vertex. Many realistic networks have a high value for this probability, called
clustering coefficient [16], and these graphs are more amenable to partitioning. For these
graphs, partitioning codes can be used to generate partitionings and the quality of 1-D and
2-D partitionings can be analyzed with respect to the clustering coefficient. Poisson random
graphs are the worst case limit of this family of graphs.

This paper is organized as follows. In Section 2, we discuss implementations of dis-
tributed BFS for 1-D and 2-D partitioning. In particular, there are several choices for the
communication operations. In Section 3, for a Poisson random graph, we discuss the size of
the messages in these communication operations in terms of parameters of the graph and
the partitioning. In Section 4, we show the performance results of parallel BFS in the 1-D
and 2-D cases. Section 5 concludes the paper with several directions for future research.

2 Implementation of Distributed BF'S

In this section, we present the implementation of distributed BFS with 1-D and 2-D par-
titioning. The 1-D algorithm is a special case of the 2-D algorithm. The algorithms are
described in the next two subsections. Then we discuss two important issues: options for
the communication steps, and scalable data structures.



2.1 Terms and Definitions

In the following, we use P to denote the number of processors, n to denote the number of
vertices in a Poisson random graph, and k to denote the average degree. We will consider
undirected graphs only in this paper.

We define the level of a vertex as its graph distance from a start vertex. Level-
synchronized BFS algorithms proceed level-by-level starting with the start vertex (or a
set of start vertices). We define the frontier as the set of vertices in the current level of the
BFS algorithm. A neighbor of a vertex is a vertex that shares an edge with that vertex.

2.2 Distributed BFS with 1-D Partitioning

A 1-D partitioning of a graph is a partitioning of its vertices such that each vertex and
the edges emanating from it are owned by one processor. The set of vertices owned by a
processor is also called its local vertices. The following illustrates a 1-D P-way partitioning
using the adjacency matrix, A, of the graph, symmetrically reordered so that vertices owned
by the same processor are contiguous.
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The subscripts indicate the index of the processor owning the data. The edges emanating
from vertex v form its edge list and is the list of vertex indices in row v of the adjacency ma-
trix. For the partitioning to be balanced, each processor should be assigned approximately
the same number of vertices and emanating edges.

A distributed BFS with 1-D partitioning proceeds as follows. At each level, each pro-
cessor has a set F' which is the set of frontier vertices owned by that processor. The edge
lists of the vertices in F' are merged to form a set N of neighboring vertices. Some of these
vertices will be owned by the same processor, and some will be owned by other processors.
For vertices in the latter case, messages are sent to other processors (neighbor vertices are
sent to their owners) to potentially add these vertices to their frontier set for the next level.
Each processor receives these sets of neighbor vertices and merges them to form a set N of
vertices which the processor owns. The processor may have marked some vertices in N in a
previous iteration. In that case, the processor will ignore this message, and all subsequent
messages regarding those vertices.

Algorithm 1 describes distributed breadth-first expansion using a 1-D partitioning, start-
ing with a vertex vs. In the algorithm, every vertex v becomes labeled with its level, L, (v),
i.e., its graph distance from vs. (BFS is a simple modification of breadth-first expansion.)

The data structure L, (v) is also distributed so that a processor only stores L for its local
vertices.

2.3 Distributed BFS with 2-D partitioning

A 2-D (checkerboard) partitioning of a graph is a partitioning of its edges such that each
edge is owned by one processor. In addition, the vertices are also partitioned such that
each vertex is owned by one processor, like in 1-D partitioning. A process stores some



edges incident on its owned vertices, and some edges that are not. This partitioning can
be illustrated using the adjacency matrix, A, of the graph, symmetrically reordered so that
vertices owned by the same processor are contiguous.
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Here, the partitioning is for P = RC' processors, logically arranged in a R x C' processor
mesh. We will use the terms processor-row and processor-column with respect to this pro-
cessor mesh. In the 2-D partitioning above, the adjacency matrix is divided into RC' block
rows and C block columns. The notation AE:}) denotes a block owned by processor (i, 7).
Each processor owns C' blocks. To partition the vertices, processor (i,j) owns the vertices
corresponding to block row (7 —1)R+1. For the partitioning to be balanced, each processor
should be assigned approximately the same number of vertices and edges. The 1-D case is
equivalent to the 2-D case with R=1or C = 1.

For 2-D partitioning, we assume that the edge list for a given vertex is a column of the
adjacency matrix, which will slightly simplify the description of the algorithm. Thus each
block contains partial edge lists. In BFS using this partitioning, each processor has a set F’
which is the set of frontier vertices owned by that processor. Consider a vertex v in F. The
owner of v sends messages to other processors in its processor-column to tell them that v is
on the frontier, since any of these processors may contain partial edge lists for v. The partial
edge lists on each processor are merged to form the set IV, which are potential vertices on
the next frontier. The vertices in N are then sent to their owners to potentially be added
to the new frontier set on those processors. With 2-D partitioning, these owner processors
are in the same processor row. The advantage of 2-D partitioning over 1-D partitioning
is that the processor-column and processor-row communications involve R and C proces-
sors, respectively; for 1-D partitioning, all P processors are involved in the communication
operation.

Algorithm 2 describes distributed breadth-first expansion using a 2-D partitioning, start-
ing with a vertex v,. In the algorithm, every vertex v becomes labeled with its level L, (v),
i.e., its graph distance from wvy.



Algorithm 1 Distributed Breadth-First Expansion with 1-D Partitioning

N 0, v=ws

1: Initialize L, (v) = { s, otherwise
2: for [ =0 to co do
F — {v | L, (v) =}, the set of local vertices with level [
if F' = () for all processors then

Terminate main loop
end if
N « {neighbors of vertices in F' (not necessarily local)}
for all processors ¢ do

N, — {vertices in N owned by processor ¢}
10: Send N, to processor g
11: Receive N, from processor ¢
12:  end for
13 N «<—U,N; (The N, may overlap)
14:  for v € N and L,, (v) = oo do

15: L, (v) —1+1
16: end for
17: end for

Algorithm 2 Distributed Breadth-First Expansion with 2-D Partitioning

(1 0, v=uws

1: Initialize L, (v) = { s, otherwise
2: for [ =0 to co do
F — {v | L, (v) =}, the set of local vertices with level [
if F' = () for all processors then

Terminate main loop
end if
for all processors ¢ in this processor-column do

Send F' to processor ¢

Receive F from processor ¢  (The F, are disjoint)
10:  end for
1:  F—,F,
12: N « {neighbors of vertices in F' using edge lists on this processor }
13:  for all processors g in this processor-row do

14: N, « {vertices in N owned by processor ¢}
15: Send N, to processor ¢
16: Receive N, from processor ¢

17:  end for
18 N «— Uy N, (The N, may overlap)
19:  for v € N and L,,(v) = oo do

20: L, (v) —1+1
21: end for
22: end for




2.4 Communication Options

In this subsection, we describe the communication operations of the above algorithms in
detail. Algorithm 1 for 1-D partitioning has a single communication step, in lines 8-13. Al-
gorithm 2 for 2-D partitioning, in contrast, has two communication steps: lines 7-11, called
erxpand communication, and lines 13-18, called fold communication. The communication
step in the 1-D algorithm is the same as the fold communication in the 2-D algorithm.

2.4.1 Expand communication

In the expand operation, processors send the indices of the frontier vertices that they own to
other processors. For dense matrices [6] (and even in some cases for sparse matrices [9]), this
operation is traditionally implemented with an all-gather collective communication, since
all indices owned by a processor need to be sent. For BFS, this is equivalent to the case
where all vertices are on the frontier. This communication is not scalable as the number of
processors increases.

For sparse graphs, however, is it advantageous to only send vertices on the frontier,
and to only send to processors that have non-empty partial edge lists corresponding to
these frontier vertices. This operation would now be implemented by an all-to-all collective
communication. In the 2-D case, each processor needs to store information about the
edge lists of other processors in its processor-column. The storage for this information is
proportional to the number of vertices owned by a processor, i.e., it is scalable. We will
show in Section 3 that for Poisson random graphs, the message lengths are scalable when
communication is performed this way.

We thus have all-gather and all-to-all options for the expand communication. On hy-
percubes, the all-gather operation is often implemented with a recursive-doubling algorithm
[6], which is also better than other options for shorter messages. On mesh and torus archi-
tectures all-gather may be implemented with a ring algorithm; see, e.g., [14].

2.4.2 Fold communication

The fold communication is traditionally implemented for dense matrix computations as an
all-to-all operation. We will show in Section 3 that the message lengths are scalable in this
operation for Poisson random graphs.

An alternative (which we have not used) is to implement the fold communication as a
reduce-scatter operation. In this case, in Algorithm 2, each processor receives its N directly
and line 18 of the algorithm is not required. The reduction operation occurs within the
reduction stage of the operation and eliminates duplicate vertex indices being sent to a
processor. This reduction operator is not provided by MPI, and thus this reduce-scatter
operation must be coded using sends and receives.

On hypercubes, a recursive-halving algorithm may be used for the reduce-scatter oper-
ation [6]. On mesh and torus architectures, a ring algorithm may be used.



2.5 Scalable data structures and optimizations
Storage of edge lists

In the 2-D case, each processor owns O(n/P) vertices but contains edge lists for O(n/C)
vertices, which is asymptotically larger than O(n/P). For Poisson random graphs, however,
the expected number of non-empty edge lists is O(n/P). This can be demonstrated by
examining the case where P is large.

Each edge list has on average k entries, and these are distributed among R processes
randomly. As R — oo, it is increasingly unlikely that two of these entries will be in a given
edge list. In the limit, then, the length of every edge list is either zero or one, and there
is one edge list per edge. The total number of edges in the graph is nk, so we expect nk
non-empty edge lists distributed over P processors.

When P is smaller some edge lists will be longer, so there are fewer non-empty edge lists
in that case. nk is an upper bound on the number of edge lists in the graph, so the expected
number of non-empty edge lists on a given processor is O(n/P). Thus it is necessary not
to index all edge lists, but only the non-empty ones.

Similarly, the number of unique vertices appearing in all edge lists on a processor is
O(n/P). This is demonstrated by noting that we could store edge lists for matrix rows
rather than columns. The above analysis applies here, so the number of nonempty row edge
lists would be O(n/P) as well. Each nonempty row edge list on a processor corresponds to
a unique entry in the column edge lists on that processor.

Local indexing

The index of a vertex in the original numbering of the graph vertices is called the global
index of the vertex. To facilitate the storage of data associated with local vertices (e.g., L),
the global index of a local vertex is mapped to a local index. This local index is used to
access L and other arrays. The mapping from global indices to local indices is accomplished
with a hash table.

Each processor stores three such mappings. The vertices owned by a processor are
indexed locally, as noted above. Moreover, a mapping is generated for any vertices with non-
empty edge lists on a processor. Lastly, a mapping is generated for any vertices appearing
in an edge list on a processor. As described previously, the latter two mappings include
O(n/P) vertices each. The first mapping is obviously O(n/P).

Sent neighbors

Each processor keeps track of which neighbor vertices it has already sent. Once a neighbor
vertex is sent, it may be encountered again, but it never needs to be sent again. The storage
required for this optimization is proportional to the number of unique vertices that appear
in edge lists on a given processor, which is O(n/P) as demonstrated above.

3 Message Lengths for Random Graphs

For Poisson random graphs, we can derive bounds on the length of the communication
messages in distributed BFS. Recall that we define n as the number of vertices in the
graph, k as the average degree, and P as the number of processors. We assume P can be



factored as P = R x C, the dimensions of the processor mesh in the 2-D case. For simplicity,
we further assume that n is a multiple of P and that each processor owns n/P vertices.

Let A’ be the matrix formed by any m rows of the adjacency matrix of the random
graph. We define the useful quantity

T

n

which is the probability that a given column of A’ is nonzero. The quantity mk is the
expected number of edges (nonzeros) in A’. The function v approaches mk/n for large n
and approaches 1 for small n.

For distributed BF'S with 1-D partitioning, processor i owns the A; part of the adjacency
matrix. In the communication operation, processor 7 sends the indices of the neighbors of
its frontier vertices to their owner processors. If all vertices owned by ¢ are on the frontier,
the expected number of neighbor vertices is

n-vy(n/P)-(P—-1)/P.

This communication length is nk/P in the worst case, which is O(n/P). The worst case
viewed another way is equal to the actual number of nonzeros in A;; every edge causes a
communication. This worst case result is independent of the graph.

In 2-D expand communication, the indices of the vertices on the frontier set are sent to
the R — 1 other processors in the processor-column. In the worst case, if all n/P vertices
owned by a processor are on the frontier (or if all-gather communication is used and all
n/P indices are sent) the number of indices sent by the processor is

n
pE-1)

which increases with R and thus the message size is not controlled when the number of
processors increases.

The maximum expected message size is bounded as R increases, however, if a processor
only sends the indices needed by another processor (all-to-all communication, but requires
knowing which indices to send). A processor only sends indices to processors that have
partial edge lists corresponding to vertices owned by it. The expected number of indices is

5 A(n/R) - (R - 1).
The result for the 2-D fold communication is similar:
= +7(n/C) - (C = 1).

These two quantities are also O(n/P) in the worst case. Thus, for both 1-D and 2-D par-
titioning, the length of the communication from a single processor is O(n/P), proportional
to the number of vertices owned by a processor.

For illustration purposes, Figure 1 shows the message lengths for a single processor for
1-D and 2-D partitioning (sum of expand and fold communication in the 2-D case) as a
function of the average degree, k. The results show that 2-D partitioning is advantageous
when average degree is large. When more processors are used, the cross-over point is at a
higher k.
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Figure 1: Message lengths for 256 and 1024 processors.



4 Parallel Performance Results

This section shows timing results for distributed BFS for Poisson random graphs with
arbitrary but load balanced 1-D and 2-D partitionings. For 2-D partitioning, R = C' = /P
was used in all cases. For 1-D partitioning, R = 1 and C = P was used, which performed
better than R = P and C = 1. One hundred pairs of start and target vertices were
generated randomly, and the timings reported are the average of the final 99 trials. Each
search terminated when either the target vertex was reached or the size of the fringe on
every process was zero. The code was run on MCR (a large Linux Cluster with a Quadrics
switch) and IBM BlueGene/L located at Lawrence Livermore National Laboratory.

First, the actual message lengths in distributed BFS were measured and are plotted
in Figure 2. The results are qualitatively similar to the bounds derived in Section 3 and
plotted in Figure 1.

Figure 3 shows a weak scaling test on MCR using average degree k£ = 100. The global
number of vertices increases proportionally with the number of processors in this test. The
largest problem size is 102.4 million vertices and 10.24 billion edges. As expected for this
value of k, 2-D partitioning shows better timings than 1-D partitioning. Qualitatively
similar results were observed on BG/L.

Figure 4 shows a weak scaling test on MCR using average degree k = 10. The largest
problem size is 1.024 billion vertices, although the number of edges is the same as that for
the previous problem. 1-D partitioning is better in this regime of k£ = 10.

Figure 5 shows a strong scaling test, where the global number of vertices is constant
while the number of processors is increased. The number of local vertices decreases. The
scaling is worse for 1-D partitioning because 1-D partitioning behaves worse for small local
problem sizes. The decline in speedup signals the point where increased communication
overhead outweighs any performance gain obtained by increased parallelism. 1-D partition-
ing reaches this point for smaller P than 2-D partitioning, since the number of messages is
asymptotically larger in the 1-D case.

Figure 6 shows a weak scaling test using 2-D partitioning with BG/L. The timing appears
to increase logarithmically with the global number of vertices, suggesting that the time
dependency is correlated to the number of synchronization steps, or levels. We note that the
average path length between two arbitrary vertices in a random graph grows as a logarithm
of the number of vertices [7]. However, this growth, from length 5.6 for the smallest problem
to length 7.1 for the largest problem is slower than the growth in the timings. Thus the
communication time is also increasing as the number of processors increases. Unfortunately,
the current data are not precise enough to determine the asymptotic rate of growth.

5 Conclusions

This paper has demonstrated large-scale distributed BF'S with Poisson random graphs with
as many as 1 billion vertices and 10 billion edges. Although the run time is almost entirely
due to communication, good speedups are possible. We considered 1-D and 2-D parti-
tionings theoretically and experimentally. 2-D partitionings are to be preferred when the
average degree of the graph is large. Further, for both 1-D and 2-D partitionings of Poisson
random graphs, the memory usage per processor is scalable.

Future work should address graphs besides Poisson random graphs, e.g., graphs with
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Figure 2: Effect of average degree on message lengths, 10000 vertices per processor.

large clustering coefficient mentioned in the Introduction, and scale-free graphs, which are
graphs with a few vertices of very large degree. Graphs with large diameter should also be
investigated for completeness, although a level-synchronized algorithm may perform poorly
for these cases.
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